180

IEEE MICROWAVE AND GUIDED WAVE LETTERS, VOL. 2, NO. 5. MAY 1992

Full-Wave Analysis of a Lossy Rectangular
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Abstract—The full-wave mode-matching method employing the
similarity transformation to derive the eigenvalue equation for
the periodic bumpy regions that model the surface roughness of a
WR-10 (75-110 GHz) waveguide is presented. For the particular
case study under the particular conditions applied, attenuation
losses increase by approximately 60% (36%) at 75 GHz (110
GHz).

1. INTRODUCTION

HE presence of finite conductivity in a lossy rectangular

waveguide results in a cross coupling between various
TM and TE modes [1]. This implies that a hybrid mode
formulation should be used for the rigorous field analysis of a
lossy rectangular waveguide to obtain very accurate complex
propagation constant. The existence of the rough or bumpy
inner surfaces shown in Fig. 1, however, further complicates
the problem. These bumpy inner surfaces introduce additional
disturbance on the electromagnetic field distribution nearby
and increase the propagation losses of the waveguide.

Morgan [2] reported a theoretic investigation on the effect
of surface roughness of a semi-infinite conducting plate as-
suming periodic rectangular and triangular surface grooves.
The power dissipation of the rough conductor plate was found
to increase by about 60% over that for a smooth surface.
Deventer, Katehi, and Cangellaris [3], on the other hand,
applied the integral equation method using the equivalent sur-
face impedance boundary condition to investigate the effect of
surface roughness of a particular microstrip on the attenuation
losses. Approximately 22% increase in attenuation constant
was observed at 10 GHz.

In this letter, we will focus on the dominant mode.propa-
gation of a WR-10 rectangular waveguide as shown in Fig. 1.
The surface roughness is modeled by the periodic rectangular
grooves of period r(r = p + ¢). The sidewalls, however,
are assumed to be perfect conductors. Because we focus our
attention on the effects of bumpy surface of finite conductivity
o on the dominant nearly TE;p mode, the simplified model is
intended for physical understanding. The eigenvalue equation
for the periodic bumpy region is derived by invoking a
similarity transformation, which results in a simple close-form
eigenvalue equation for determining the air modes and metal
modes [4] in the bumpy surface region. Once these modes are
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Fig. 1. Simplified model for a WR-10 rectangular waveguide with rough
inner surfaces, a = Nr = 2b=254mm,p =qg=h, o = 4.1 x 10" S/m
and ¢t = T00 pm. Each unit cell spans a distance r.

obtained, the conventional network equivalent representation
of the mode-matching method is applied to derive the final
nonstandard eigenvalue equation [5], which results in the
complex propagation constants.

II. DISPERSION RELATION FOR THE BUMPY TOOTHED REGION

Since the mode-matching method is well known, only the
derivation for the eigenvalue equation in the bumpy region,
either y € (¢,t+ h) or y € (t+b,t + b+ h), is briefly given.
Fig. 2 shows the equivalent circuit representation of the bumpy
region, which is the expanded view of the corresponding
region in Fig. 1. Applying similar procedure described in [6],
the electric and magnetic field vectors at both input and output
interfaces of a unit cell are given by

Tz || Vo
2w

Vi Va 113
= T =
i) -mlz] - |5
where T is the known transfer matrix, and its determinant is

equal to unity. Next, we apply the similarity transformation to
diagonalize the matrix 7. Thus, T becomes

[T] = [A)[A)[A] 7, )
where
a0
w=% 4l Go
_ Ty Ty
A= [/\1 —Tin A2 — Tu}’ (36)
and
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Fig. 2. Configuration of the bumpy region and its equivalent representation.
Air region in each unit cell has a dielectric constant £, (g, = 1) and a width
q/2; Metal region in each unit cell has a width p and the complex dielectric
constant ¢, charactrized by 1 — jo/we,.

(Th1 + Too) £/ (T11 + Ts)? — 4
1,2 = .
’ 2

Cascading IV unit cells results in the N multiples of T'. The
resultant transfer matrix is

e e B 7| S [ S

(30
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The resonance condition of this equivalent transmission line
system requires that

b
7 =-7=-"N—o. )
dn
Equation (5) is the eigenvalue equation for determining the
corresponding air modes in the rectangular grooves and metal

modes [4] in the teeth shown in Fig. 2, respectively.

III. RESULTS

The convergence study, satisfying the relative convergence
criterial [4], is investigated for a WR-10 waveguide with
square grooves or teeth, ie., p = A = 127 pym (N = 10
in Fig. 1). The calculation of phase constants and attenuation
losses with accuracy better than 0.01% and 1.0%, respectively,
requires that the number of metal modes in each toothed region
is greater than 10, i.e., n > 10. Therefore, in the following
analysis, n = 10 is used.

Fig. 3 plots the attenuation loss and the normalized phase
constant of the nearly TE o mode against frequency under var-
ious surface roughness conditions controlled by h/p ratio with
N = 20 or p = 63.5 um, where A is the depth of the rectangu-
lar groove. By varying the 4 /p ratio from 1.0 to 0.25 at -0.25
decremental step, the attenuation loss is consistently lowered
and approaching the limiting case where h = 0, i.e., no bumpy
surface is present, but smooth surface with finite conductivity
o. At 75 (110) GHz, for example, the attenuation loss increases
by about 60% (36%) over that for the smooth surface.

Note that the increase of attenuation loss at f = 75 GHz
is greater than that at f = 110 GHz when compared with
those for the smooth surface. This can be explained by the fact
that the magnetic fields H, and H, near the bumpy surface
contribute to the attenuation loss of the near TE;y mode. In
the case of a WR-10 waveguide with PEC inner surfaces,
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Fig. 3. Attenuation constant and the normalized phase constant of the nearly
TEjp mode as a function of frequency under various surface roughness
conditions controlled by h/p ratio with N = 20, or p = 63.5 um.
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IH,I? « (1 — f%/f?), where f. is the cutoff frequency of
the waveguide, and H,, is related to the longitudinal current
flowing along the z—direction on the bumpy surface. On the
other hand, TH,I? o f2/f% and H, is related to the trans-
verse current flowing along the bumpy surface. Therefore, the
transverse (parallel) current, proportional to H,(H,), increases
(decreases) as frequency decreases. As Morgan [2] pointed
out that the transverse grooves have a considerably greater
adverse effect on attenuation loss than grooves parallel to the
current, the combined effects of transverse and parallel surface
currents will result in higher attenuation losses near the WR-10
waveguide cutoff frequency, approximate by 59.0 GHz.

IV. CONCLUSION

Rigorous investigation on the surface roughness effects of a
WR-10 rectangular waveguide is presented. The new full-wave
approach employs a similarity transformation to derive the
eigenvalue equation for the periodic bumpy regions that model
the surface roughness of the WR-10 waveguide. A particular
case study of the surface roughness effects is reported and its
results are discussed in detail.
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